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Vibration Filter Using Vector Channel Periodic Lattice
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School of Mechanical Systems Engineering, Chonnam National University,
300 Yongbong-dong, Gwangju 500-757, Korea

This paper considered identification of vibration characteristics of flexible structure with

vector channel periodic lattice filter. We present an algorithm for AR coefficients for the vector-

channel lattice filters, and characteristic equation and transfer function are derived from these

coefficients. Vibration lattice filter is then constructed from the vector channel lattice filter, and

performance of this vibration filter is tested with a test signal which is a combination of many

sine waves to compare the performance of scalar and vector channel lattice. Also it is applied

to the cantilever data to identify properties of the system, such as natural frequencies and damp-

ing ratios, to show its performance.
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1. Introduction

The recursive least-squares method is exten-
sively used for adaptive parameter identification.
This method is based on a fixed-order model, and
has a limitation for identification of large struc-
tures. Large flexible structures have many modes
of vibration, of which different numbers may be
excited at different times. Hence, determination of
the effective order of the structure is needed along
with identification of parameters. A least-squares
lattice filter is an algorithm for least-squares para-
meter estimation that is recursive in both time and
order. The order-recursive property allows the
lattice filter to identify the number of substantial-
ly excited modes of a structure. The lattice filter
is more efficient than the standard least-squares
algorithm for large orders, and it is numerically
stable.
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The lattice structure is based on two sets of vec-
tors called forward and backward residual errors.
The forward residual error vectors are obtained
from projection of the most recent regression vec-
tors, which contain measurement histories, on the
span of previous regression vectors. The norm of
the &™ order forward residual error is the mini-
mum value of the objective functional to be mini-
mized by a least-squares estimates of the para-
meters. The backward errors can be thought of as
a set of Gram-Schmidt vectors that span the same
space as the regression vectors. The lattice form
algorithms are fast, numerically stable, and re-
cursive in both time and system order.

Lee, Morf, and Friedlander first derived the
time update equations for the lattice and appli-
ed to the signal processing and control problem
(Lee et al., 1981). Montgomery and Sundararajan
have used lattice filters in adaptive identification
and control of a flexible beam (Sundararajan and
Montgomery, 1983, 1985). Wiberg introduced a
vibration lattice to impose the constraint that all
measurements from a single structure should sat-
isfy the same autoregressive model (Wiberg, 1985 ;
Wiberg and Gillis, 1985). The information re-
presented by this constraint reduces the bias that
sensor noise produces in parameter estimates. An
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important limitation of the vibration lattice was
that it applied only to free-response data. The
vector channel lattice is derived for infinite histo-
ries of the input and output (Jabbari and Gibson,
1988a, 1988b, 1989); this framework facilitates
convergence analysis for approximation theory
in applications to infinite dimensional models of
flexible structures and other distributed systems.

The concept of periodic forms is due to Pagano,
and Jabbari extended the circular or periodic struc-
ture to the basic vector channel lattice. The main
focus of this paper is the identification of the sys-
tem parameters. We present an algorithm for de-
termining AR coefficients using vector channel
lattice. Then the transfer function can be obtained
from these AR coefficients. If the only concern is
the vibration parameters of the structure such as
eigenvalues and damping constants, we can skip
the process of determining AR parameters which
is time consuming. Instead we can obtain these
parameters directly from the reflection coeffici-
ents, which is possible via the vibration filter. We
present the vibration lattice filter algorithm from
the vector channel periodic lattice filter. The pro-
cedure is so simple that this filter can be imple-
mented in on-line identification of the system para-
meters. This vibration filter is applied to test sig-
nal which is a combination of many sine waves to
compare the performance of scalar with vector
channel lattice. Also it is applied to the cantilever
data to identify natural frequencies and damping
ratios to show its performance. Its convergence is
very fast with acceptable accuracy, which shows
the superiority of the vector channel lattice and
vibration lattice filter.

Consider the following p-channel nth order
AR model

n

v(k) =2 y(k—1) A: (D)

=1

where y (k) is an m X p matrix, A;is pX p matrix.
Let there be m outputs and one input. y (%) can
be expressed as follows

v(k) = (k) y2(k) - vo(k)] 2)

In vector channel lattice, both control system in-
puts and outputs can be treated as measurements.
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If the numbers of input # (%) and output are 1
and m, respectively, the first channel becomes the
measurement vector [yi1(k) yai (k) - ym ()17,
the second channel is m-vector [#% (%) 0 --- 0]7,
the third one becomes [0 #% (&) 0 --- 0]7, and
finally m2+ 1™ channel becomes [0 --- 0 % (%) ]7,
and they constitute vector channel lattice. It can
be shown that this model can be imbedded into a
p channel (p=m+1) vector channel AR model.

Let us define an infinite history vector for 7™
channel as

Yi(k)=[yl (k) yI(k—1) -]7, i=1,p (3)

and these history vectors are assumed to be in the
following Hilbert space

L(R™A) (@)
={p=[o1. 87, 83,17 [ 9P =g, <0}

where ¢, ) implies inner product, and A, 0<A<1,
is forgetting factor.

b H=Z 1413, (s)

The periodic lattice finds the projection of the
most recent history vectors onto the span of pre-
vious vectors. That is, projecting Y;(%), for ex-
ample, onto the span of Y;_1(k), Yi2(k), - To
simplify the derivation, we use the following no-
tation.

sTVYi(k) =Y (k), i=2,,p

- (6)
s Yi(k) =Y, (k—1)

2. Vector Channel Periodic
Lattice Filter

2.1 Filter algorithm
Consider the following subspace.

HY" (k) =span{s~'Y:(k),s?Yi(k), . s"Yi(k)} (7)

The forward residual error f7 (k) and backward
residual error b7 (%), of Y; (%) and s™"Y:(k), onto
HP" (k) and H»"'(k), respectively, can be de-
fined as

fI(k) =11—P!"(k)]Y:(k) (8)
b7 (k) =[1—P"" ' (k) ]s7"Y:(k) )
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where P""(k) is orthogonal projection onto H7" (k).
Then, the algorithm for the vector channel peri-
odic lattice filter was given by Jabbari (1989)

(k) =t () =R (B rfa (B) (10)

PR =i (B) —RE (B er(R) (1)

L () =Lk —RL(WEME) (12)

LA (R =L () — RE: (W KP(R) (13)
where

REal) = (14)

REs (k) = (15)

KI'(k) =<f(k), bl (k) (16)

Lol =<2 (R). FE(R)Y (17)

£ (B) =<BE(R), BE(R) (18)

The length of forward and backward residual er-
rors are infinitely long. The algorithm, when im-
plemented, uses e/ (k) and #/ (k) which are the
top m-entries of /7 and b7 (k) as in Egs. (10) and
(11). The algorithm is complete with the follow-
ing time update equations of K/ (k).

K (k) =2K!I'(k—1)

e (BTG () ) (1Y
GI(R) =G (k) —%ww) T (0)

For the residual algorithm, the X m matrices
G (k) are the only matrices that are inverted.
The size of m, the number of sensors in each
channel, is often considerably smaller.

2.2 AR Coefficients

P (k) Yi(k) and PP"' (k) s7"Yi(k), i=1,2,-,
p, can be written as a linear combination of the
history vectors that span H}" (k) and H>" ' (k),
respectively. This means that

£ (k) = Yi(k) — ﬁ s7Yi(k) A (k) (21)

b7 (k) =s7"Y:(k) — Zs Y1 (k) B (k) (22)

Since f/*(k) is the error remaining after orthogo-
nal projection of the data taken through time /%

onto the history space H}"(k), the coefficient
7i(k) in Eq.(21),
cient for the order # AR model, estimated at time

for example, is the coefti-

k. It minimizes &b(R™ A) norms of f7(k) over
all autoregressive models of order 7. Substitut-
ing Egs. (21) and (22) into the order update Egs.
(10) and (11) and matching coefficients of the
history vectors yields

Afzﬂ,i(k): fzz(k) _R;l,i(k>Bz,i—l(k) <23>

witi (k) =R} (k) (24)

Biihi (k) =Bhi1 (k) —RE,: (k) Az (k) (25)
B (k) =R%,: (k) (26)

Bjo (k) =By (k—1) (27)

where j=1,---,#. The AR coefficients A} ;(%)
and Bj; (k) can be generated with Eqgs. (23)-(27),
with the initialization process deduced from the
basic definitions. If the AR algorithm is used at
every time step, this does not create any difficult-
ies. However, to reduce computational cost and
to provide the ability to increase or decrease the
order of the model from one time step to another,
5.:(B) at time /A

directly. In the following two new equations are

it is preferable to calculate B

derived to make this possible.

Define m vectors as follows :
..’0’1’0’...:]T’ j:l’---’m (28>

where 1 is at j-th position, and the projection
error of ¢; onto HP% (k) becomes

P (k) =[I— P21 (k)] 4 (29)

Considering the following subspace

ﬁ?'_”l (k) =span{ Y1 (k), s Vi (k),
Ver(R), du - o) (30)
— HYE(8) @ span{ G (B), -, fois ()
WeE can get
B () =B () —25 << ; bR (1)

Since @27 (k) =[I—P2"(k)]¢; and PP"(k) ¢,€
H?"(k), there exists C}i*(k) such that Eq. (32)
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holds

BB =¢— 2 s Vi) Cl ) (3)

From Egs. (31) and (32), there follows
¢i— Yi(k) CiP (k)

— 5 V() Cl ) —sYilh) G (k)
b (k)

=¢;,— Y:(k) C}™ (k) + Zﬁ,i(k) Y:(k) B (k) (33)
o (L) _ b (k) 1+1

_lgls K(k){cm (k) Lﬁ,l(/@ n,i (k)}

- b,,<<//?> SR

and comparing the coefficients of Eq. (33), we get

b (k) i

Crt ) =) — 2 B () (30
oy b7 )
R =5 (e )

where [=0,---,n—1, j=1,---,m, i=1,"--, p.
Let 6%(%) denote the part of b7 (k) below the
first m rows. Then from Eq. (22),

bt (k) =s"Y:(k—1) — Zs 7Y (k—1) B (k) (36)

and
O(M)

n — 70,n-1 n -1,.n
bi(k)—{b?(k_l)}l-[eﬁi (R)J[GF ()]l (k) (37)

Notice that

[ () =@ (k) B2t (k) -
_Ml ¢m1
—m)[ () e CaM(R)] (38)

S (k)]

*S’"“Yi(k) [Crt™t (k) -+ Cai™ (k)]

Hence it follows from Eqgs. (37) and (38) that

Bl =s"Yilk=1) - Zs Vi lk=1) B (k)

(39)
—Z‘.s Vi (k=1 [CIH ) - Cod (R I[GE (k)] ()
Comparing the coefficients of history vectors in
Eqgs. (36) and (39), and simplifying Eqgs. (34), (35),
with respect to channel,

J — v _ bR
Chir,i (k) =C,: (k) 5.0k By (k) (40)
v 78 (k)
Cn+1,z (k> Lg,p(k) <4l>
ho (B—1)

(42)

=Bio (k) —[Cii' (k) - Cin (k)] [GE (k) 778 (R)

where j=1,---,n—1, =1,---,m. Using these
equations, at any given time, the AR coefficients
of arbitrary order can be generated as long as the
order is not larger than the order of the residual
filter.

Eq. (21) can be expanded to obtain p channel

nth order AR model, as follows ;
YR +Ry k=) A=W E)  (@3)

where A;=Q;U!

variance white noise process, and

,and W (k) is zero mean finite

[1 —A, —A%s -+ —ALY
0 1 —Abs - —ALZ
u=|: : S : (44)
0 0 0 - —Anp
L0 0 0 - 1
B —Aﬁ, AP+1 _Agfp—l
—ALY AL, - —AEE
Q= : : : (45)
—Ai A, - —ALY
| —An —Ai. - —Abs
r _A?Z{)I _A%)zﬂ A3p 1
=AY =A% —A¥?
Q= : : : (46)
—ANE —ARE - —AY
| AT AR - =AY

U matrix is upper triangular matrix, and calcula-
tion of its inverse is simple.

3. Vibration Filter

3.1 Eigenvalues, frequencies and damping
ratios

From Eq. (43),

vi(k), j=1,-

we can derive equations for
M, as
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vi(k) +yvin(b—1) Al +yvq(B—2) A+
+u(k—1) A" +u(k—2) A3V 4 (47)
=W;(k)

Hence, its characteristic polynomial is written as

Pz ) =1+Al'"z'+ Az 2+ Az 3+

+AxZT" (48)

The characteristic roots A;(7=1,2,---, N) can be
determined from the following matrix

0 1 o - 0
0 0 1 -0
0 0 o - 0
. . : H (49)
0 0 o - 1
—AF —A AR, - —AP

and the transfer function is
() :A{H,lz—l+A£+1,1Z—2+Aé‘+1,1z—3+mJrA{”H,lZ,m
’ AN A AV Al

N *
_ Tijk Vijk
1§1< 1= 227! + 1—/12‘2_1>

(50)

where 7 is response point, j input point, A, and A#
are k-th complex conjugate eigenvalues of dis-
crete characteristic equation, and 7y, is complex
residue. Since 7, represents relative amplitude
of 7 point when j point is excited, mode shape
can be determined from 7. Natural frequency
wr and damping ratio { can be obtained from
the characteristic roots, as (Jabbari and Gibson,
1988b)

1/ (In(Ae-2%) ) Y S A
wk=7v/ 4 +<COS ) Tk'/l: > (51)
[In (Ae-A%) 1?

(52)

&

- o L At 2
\/[ln(Ak 5] +4<cos 2m>

where T is sampling time. Note that in Eq. (52),
the inverse cosine function appears in the deno-
minator. For an alias frequency, therefore, this
equation results in a higher damping ratio as com-
pared to the use of the true frequency.

3.2 Vibration lattice filter
The usual lattice computes reflection coefficients
of autoregressive (AR) process Eq. (1) directly,
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but not the A; coefficients. One method of ob-
taining the A;’s is to use another lattice-like re-
cursion. Then, the A/s can be put into block
companion form, and some eigenvalue routines
can be used to obtain the frequencies of vibration,
as shown in previous sections. The problem ap-
pears to be that the procedure for estimating the
A/’s depends on the reflection coefficients reaching
steady-state values. The implication is that the
method works better for more lightly damped
systems. To reduce numerical errors, it is desir-
able to calculate the natural frequencies directly
from the reflection coefficients. The vibration fil-
ter is proposed to solve this problem (Wiberg and
Gillis, 1985).

This vibration filter is now generalized to the
vector channel case. From Egs. (10)-(11),

ri (k) =y:(k)
ri(k) =7 (k) *Rg,i (k) yi(k)
r? (k) =Rs,: (k) R},: (k) vy (k) +7i1 (k)
_Rll;,i<k) yi(k)
rI' (k) =R (k) Ry,: (k) vy (k)
+REZ(R)RY: (k) vk (B)+-- (53)
+ Ry (k) REP (k) v (k)
+787% (k) —RE (k) y: (k)
el (k) =—R}: (k) vy (k)
—Ry: (k) vk (k) —-- (54)
— R} (k) r23% (k) +y: (k)
Defining x; (k) =[7%1 (k) rii (k) - 23 (k) 17,
and ef(k) as lattice output, Egs. (53) and (54)
can be written as

xir1 (k) =A (k) x:(k) + B(k) y:(k) (55)

el (k) =C(k)x:(k) ty:(k) (56)
where
o o0 - 0 0 0
Ay 0 - 0 0 0
A(k)z ASI A32 0 0 0 <57>

Anl Anz Ann—z Ann—l 0
An=1, An=R}:(x) R},: (k)
Ap=1, Au=R5? (k) R}.: (k)
An=R57* (k) Ry, (k)
Am-2=R5:*(k) R} (k)
Ann1=1
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1
SR (R)
Bk =| —RL: (k) (58)
—REE(R)
CON=[—Ro (k) —Ris(k) — —RIE(R)] (59)

Egs. (55) and (56) can be transformed to

i1 (k) =[A(k) —B (k) C(k)]x:(k)
+B(k) e (k)

vi(k)=el (k) —C (k) x:(k) (61)

(60)

The natural frequencies of vibration can be obtain-
ed from the eigenvalues of matrix [A (k) —B (k) C(k)],
which is written out in block matrix form as

A(k)—B(k) C(k)

Nu Niz Nin-1 Nin
]\721 ]\]22 JVZn—l ]VZn

62

=| 0 ]V32 ]V:m—l ]V3n ( )
0 0 . Nnn—l Nnn

where

Nu=R3;(x), Nu=R},: (k)
NMn=R}:*(k), Niu=R}:' (k)
No=1—R} (k) R%: (k)
Npx=—R3,; (k) R},: (k)
Non1=—R3,; (k) R} (k)
Nen=—R3,: (k) R} (k
Nex=1—R},; (k) R}.: (k
Nsn1=—R},: (k) R} (k)
Nsp=—R},: (k) R} (k)
Nun=1—R5* (k) R} (k)
Nun=—R5(k) R} (k)

)
)

The vibration lattice is numerically superior to,
and faster converging than, the usual lattice for
the case of free vibration with no noise, especially
when many sensors are used. The characteristic
equation is computed directly, and no extraneous
frequencies of vibration are introduced. Hence,
for the case of free vibration, the vibration lattice
is believed to be superior to any other method
presently available because of its inherent numer-

Read data -

r

Time update
K7 (k) = 2K (k=D +(ef (O (G2, (k)] " 72, (k)

G (k) = G (k=L [y

Order update
Kk
B 1
Kk
Ry (k) = L'r ([k;
'f.E

e (k) = el (k) - R} (k) 1, (k)
£ k) = # (R - Ry {kYef (k)
LLi(k)y = L)~ R (k)] (k)

L:.'rl(ﬂ = L;;-x(k) = R;J{k)x." (%)

r

Vibration filter

Caleulate  A(k)— B(k)}C(k) (eq.62)

Calculate eigenvalues of  A(k)— B{Z)C(k)

Fig. 1 Flow chart for vibration filter

ical properties and robustness with respect to the
addition of a small amount of noise.

The flow chart of the vector channel lattice filter
with vibration filter is shown in Fig. 1. If AR co-
efficients are required to determine, then the pro-
cedures for AR coefficients, Egs. (23)-(27), are
replaced in the place of vibration filter.

4. Parameter Identification

Both scalar and vector channel lattices have
been used to identify the properties of the system,
such as natural frequencies and damping ratios.
For all runs, the value of the forgetting factor is
0.99.
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4.1 Combination of many sine waves

Computer simulations are performed to show
the effectiveness of vibration lattice filter. Signals
contaminated with noise are generated with MA-
TLAB, and parameters are estimated from these
contaminated signals. These signals have 5 fre-
quency components which are shown in Table 1.
Signal s; has all the five components, and signals
Sz and s3 are incomplete in the sense that some of
their frequency components are extrmely weak.
Table 1 shows the relative amplitudes of frequen-
cy components of three signals, where randn is
white noise with zero mean and unit variance.

Natural frequencies were estimated with scalar
and vector channel lattice filter with order 40, and
the identification results are shown in Table 2.
From the table, it is evident that the filter can
estimate the frequencies from the noisy signals. As
expected, from the signal s, only, two of natural
frequencies can not be obtained. Vector channel
lattice filter with two incomplete signals sz and s3
can estimate all the frequencies.

Table 1 Amplitudes of each frequency components

in signal
Signal
Component S . 5
123 Hz 0.4800 0.4800 0.0048
446 Hz 0.5000 0.0050 0.5000
668 Hz 0.4100 0.4100 0.0041
775 Hz 0.2800 0.0028 0.2800
934 Hz 0.3700 0.3700 0.0037
noise 0.1*randn | 2.5*randn | 2.5%randn

Table 2 Estimated frequencies from the lattice filter
and vibration filter

Mode 1 2 3 4 5
Freq.(Hz) | 123.0 | 446.0 | 668.0 | 775.0 | 934.0
S1 123.0 | 445.9 | 667.7 | 775.1 | 933.9
S3 123.0 | 394.1 | 668.1 | 796.6 | 934.2
S2 & s3 123.0 | 446.0 | 667.6 | 775.5 | 934.1
Vibration
Filter 122.9 | 446.2 | 668.0 | 774.9 | 934.4
(52 & s3)
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4.2 Natural frequencies of cantilever

To test a performance of the vibration filter in
the practical situation, we acquired the vibration
signal from the cantilever, and applied the lattice
filter algorithm. A flexible beam is cantilevered to
the ground, and three accelerometers were used to
measure the accelerations of the cantilever. Time
history of one output signal is given in Fig. 2.
FRF is measured and averaged for 10 measure-
ments. The result is given in Fig. 3, where the
natural frequencies of cantilever are shown in
the figure. There are four modes of vibration
below 900 Hz range. That is 120.4, 311, 626.8, and
892.5 Hz.

Table 3 shows results of estimation of lattice
filter from the accelerometer signals. We set order

accaleratian 1

SR S |

PSDacc 1

: ;T I I:‘|| ' 1 : H

| : HE H E
| ! N I H '
o h

100 200 300 400 500

frequency (Hz}

[
' [
i [
I 1
600 o0

Fig. 3 FRF plot for cantilever
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of AR to be 30. It is observed that the estimation
results are not satisfactory for scalar channel lat-
tice, except 2™ mode. Notice that the 2"¢ mode
has a sharp peak in Fig. 2. Vector channel vibra-
tion filter with three accelerometer signals are suc-
cessful to estimate all the frequencies with errors
less than 1%.

Figure 4 shows the variation of identified ei-
genvalues with respect to number of iterations,
calculated from data of accelerometer 1 using vi-
bration filter. Its convergence is quite fast, but
the results have more errors than that of vector
channel lattice. Fig. 5 shows the behavior of ei-
genvalues computed with data from three acceler-
ometers using AR coefficients. It shows that the
result converges after 1200 iterations.

Figure 6 shows the convergence behavior of
eigenvalues and damping ratios calculated from

Table 3 Estimated results with vibration lattice

Mode ] > 3 4
Freq. (Hz) 1204 | 311.0 | 6268 | 892.5
Acc. 1260 | 3122 | 646.7 | 90522
Acc.2 122.7 | 312.6 | 660.0 | 898.4
Acc.3 1138 | 3125 | 6522 | 9106

Freq. | 1182 | 3137 | 628.7 | 896.0

Acc.1,

2&3 | D >

aMP | 0054 | 0014 | 0.039 | 0.006
ratio

T e e e i e
N /e
) AU S N S U S W ;

2 mwﬁv“ """ S R

K] i I | I I 1 I

R LTS [T BUSRE RN O N

200 U SN DU N SN S A

e e
9 x 4&) 6&) 8& 1&” 1ém 1&” '

1800 1800
iteration
Fig. 4 Eigenvalue plot estimated from scalar
channel vibration filter
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three accelerometer data using vibration filter.

S
i
-

eigenvalue

B0 1000
iteration

1200 1400 1600 1800

Fig. 5 Trajectories of estimated eigenvalues from
vector channel lattice using AR coefficients
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Fig. 6 Eigenvalue and damping ratio plot with vec-
tor channel vibration filter usuing three ac-
celerometers
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Comparing with Fig. 5 shows that the results
from vibration filter are same as the one obtained
from AR coefficients, except the early stages of
computation below 200 iterations.

The previous results show the comparison of
the vector channel with scalar channel lattices,
and the superiority of the vector channel lattice
and vibration lattice filter.

5. Conclusions

This paper considered vector channel lattice fil-
ter, and gave an algorithm for the AR coefficients
from vector channel lattice. We also presented the
characteristic polynomial and transfer function
from the AR coefficients. Then vibration filter
using vector channel periodic lattice filter is con-
structed. This vibration filter is applied to test
signal which is a combination of many sine waves
to compare the performance of scalar and vector
channel lattice. Also it is applied to the cantilever
data to identify ARMA coefficients, natural fre-
quencies and damping ratios to show its per-
formance.

The vibration filter yields the system parame-
ters, such as natural frequencies and damping ra-
tios of the structure, without computing AR para-
meters. This means that even when the ARMA
coefficients of the system can not be correctly
estimated, some vibration characteristics of the
system can be estimated with vibration filter in
the presence of unmodeled dynamics. The results
also show the computational accuracy of the
vector channel lattice, compared with the scalar
channel one. Overall, these results suggest that
vector channel vibration filter is quite effective for
recursive parameter identification of systems, and
thus can be used in on-line applications.
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